Results: All pictures downloaded and labeled by using an MacBook Digital Microscope II model #44341, Torrance, California, USA). Equipment used was a video-microscope (Celestron. LCD Digital Microscope II model #44341, Torrance, California, USA). Images were viewed and recorded in normal mode (no filters) X10 and/or 40X magnification with a video microscope. The same method was used by placing ex vivo plucked human hairs. Images also recorded. Equipment used: After evaporation, images were viewed and recorded in the normal mode (no filters) x10 and x40 magnifications. Equipment used was a video-microscope (Celestron LCD Digital Microscope II model #44341, Torrance, California, USA). All pictures downloaded and labeled by using a MacBook Apple computer and Apple Inc. iPhoto 8.1.2, Application.

Discussion: It should be noted that the attraction of a magnetic substance to a body part must be based upon electromagnetic interaction. Different parts could exhibit different magnetic profiles depending on factors such as, circadian rhythmicity, and polarity to attract substances susceptible to said interaction. This principle applies to insects and Humans. The basis is always piezoelectricity or electromagnetic induction. This effect was discovered in 1880 by the brothers Pierre and Paul-Jacques Curie.

Introduction

The purpose of this manuscript is to compare the Bioelectromagnetic forces (BMFs) emitted by the *Cx. quinquefasciatus* mosquito larva’s hair with the human counterpart. Bioelectromagnetism, is the study of the interaction between electromagnetic fields and biological entities.

The bioelectromagnetic discipline was first documented in plants by using a sensitive atomic magnetometer) detecting BMFs in living tissue [2].

Materials and Methods:

A recently published technique [3] using a glass slide, in conjunction with a video-microscope and a specially mixed Prussian Blue Stain solution (PBS) with iron nanoparticles, confirmed Corsini’s findings by enabling documentation of BMFs found in living plants and animal tissue [4]. This approach has been further validated in papers listed in the literature, such as BMFs presence in ex vivo human hair follicles [5] and BMFs penetration through 1 mm glass barrier [6]. This research hereby is now extending the detection of BMFs to insects with evidence found in selective anatomical parts of the *Cx. quinquefasciatus* mosquitoes and larvae. The functions of these newly described BMFs found in the hairs of the mosquito and humans are presently unknown.

Materials and Methods

Prussian blue was the first modern synthetic pigment and is not soluble in water [7] (Gail E et al. 2011). For this research Prussian Blue was made with aliquots of a 2.5% solution of two parts Potassium Ferricyanide (K₄Fe₆(CN)₆), one part HCl 2.5% and one part of the 2K iron particles. This formula will be referred as (PBS Fe₃ 2K) throughout the manuscript. Adult mosquitoes and larvae were placed on separate glass slides and covered by two drops of PBS Fe₃ 2K and allowed to evaporate. Images recorded. The same method was used by placing ex vivo plucked human hairs. Images also recorded. Equipment used: After evaporation, images were viewed and recorded in the normal mode (no filters) x10 and x40 magnifications. Equipment used was a video-microscope (Celestron LCD Digital Microscope II model #44341, Torrance, California, USA). All pictures downloaded and labeled by using a MacBook Apple computer and Apple Inc. iPhoto 8.1.2, Application.

Conflict of Interest: No conflicts declared.

Corresponding Author: Abraham A. Embi.

Phone 305-387-6102. Email: embi21@att.net

© 2016 by the Journal of Nature and Science (JNSCI)
Cx. quinquefasciatus samples selection criteria

Methodology: Mosquitoes, adult and larval samples were randomly picked from a sample of approximately 100 specimens. Only living larvae were selected by observing viability (ie: rapid motion response to tweezers). Instar stage was not a consideration for sample selection. All samples were processed using the same technique. As an additional comment, larvae that moved towards the edge of the wet field (drops) placed on slides were not taken in consideration, since bioelectromagnetic information (crystal accretion) is lost at that point.

Supplementary Experiments

1) A small wedge of rubberized magnetic material 2x3x0.5mm substituted the mosquito in a SSP PBS Fe3 2K and
2) While videotaping a living-wiggling larva immersed in a paramagnetic solution, a set of dislodged paired abdominal hair tuft was observed magnetically being attracted by the main body.

Results

Larvae

A visual inspection of the larvae mounted in a SSP Fe3 2k solution and allowed to evaporate showed conspicuous and consistent paramagnetic crystals accretion to the distal syphon, and hair (Figs 1,2,3).

Adult Mosquitoes

Cx. quinquefasciatus adult mosquitoes were mounted in SSPs of the paramagnetic PBSFe3 2K solution. The mosquitoes studied showed variability of paramagnetic crystals accretion to body parts. BMFs were seen at the antenna, leg tips and joints, end of wings and proboscis. This is clearly shown in (Figs 4,5).

Supplementary Experiment

To replicate the biomagnetic property of the PBSFe3 2K solution. with inanimate samples

1) The mosquito sample was substituted by a small rubberized magnetic wedge on the SSP and also covered by drops of paramagnetic PBSFe3 2K. The image obtained showed paramagnetic crystals attracted to a magnetic source (Fig 6).

Rare occurrence finding supporting the larva’s hair magnetic property.
2) Apparently, the larva undergoes rapid movements after disposing of waste material through the anal portion. In this specific video an abdominal hair tuff was dislodged. This structure (hair tuff) was videotaped being attracted by the larva’s body. It theorized that this rare attraction event confirms the presence of bioelectromagnetism.

(For additional details, please refer to supplementary video (from 0.02 to 0.13 seconds)
https://www.youtube.com/watch?v=IroOdNMSmVs

Figure 4. Showing Cx. quinquefasciatus male mosquitoes mounted in SSP Fe₃ (Paramagnetic Ferricyanide), showing: A=Distal proboscis attracting crystals B=Typical male hairy antenna C= Legs also attracting crystals and D=Another specimen showing wing attracting crystals.

Figure 5. Cx. quinquefasciatus panel. Displaying adult mosquito parts post exposure to PBSFe₃2K. Pictures from B to F show biomagnetism expressed by attracting crystals (arrows) of the paramagnetic Ferricyanide solution as follows. A=Control proboscis B=Proboscis with crystals C=Wing attracting crystals D=Mosquito tarsus (leg tip) with crystals E=Female mosquito antenna and F=Male mosquito antenna. E & F both displaying crystallization indicative of biomagnetism.

Discussion

The development of a novel and simplified method for imaging the BMFs in plant and animal tissue has allowed for the detection of BMFs in insects, namely the Cx. quinquefasciatus species and human hairs. By definition, paramagnetic materials exhibit a positive magnetic susceptibility [9]. Paramagnetic crystals, such as those of Potassium Ferricyanide are attracted by an opposite magnetic field. In the experiments presented, the paramagnetic Potassium Ferricyanide in solution covered the mosquitoes and larvae samples was placed on a glass slide (SSP). Upon evaporation paramagnetic crystals were observed adhering to external anatomical areas of the biological samples. In the adult mosquito, the individual variability observed as to the crystal accretion sites, could be attributed to some different body parts expressing different magnetic profiles.

Bioelectromagnetism found in Human and Insect hairs

Mosquitos undergo metamorphosis and during the larval aquatic stage and adult, hairs are present. A hair grouping (more than one with a single follicle) is classified as a Tuff. Only in the larva is that all images showed hairs (individuals and tufts) consistently exhibiting magnetic susceptibility (Figs 2 and 3). In the human body hairs harvested also show magnetic susceptibility (Fig 7). This finding supports a cross species similarity of bioelectro-
magnetism present in the hair shaft of humans [9] and mosquitoes (Cx. quinquefasciatus). The images support that selective body parts (such as hairs) always attract iron laden paramagnetic crystals, thus exhibiting bioelectromagnetism. The intensity of attraction in some individuals could depend on factors such as, circadian rhythmicity and polarity to attract a substance susceptible to such interaction. It is theorized that the placement of living specimens in a hostile environment could cause a “disruption of the circadian cycle which is strongly associated with metabolic imbalance” [10]. Increase in metabolism (read energy) has been shown to have a marked effect in cells at a molecular level. “This process involves the electron transfer chain and therefore, as inferred from Faraday’s Law, electron movement will induce electromagnetic fields (EMFs). Biological entities emit photoelectrons that can be tracked and visualized by small paramagnetic nano-sized iron particles” [11]. The basis is always piezoelectricity (motion converted to electromagnetism) or electromagnetic induction (production of voltage due to dynamic interaction) as described in 1880 by the brothers Pierre and Paul-Jacques Curie [12].

Summary

Using a novel and simplified method for imaging, the bioelectromagnetic energy in plant and animal; Cx. quinquefasciatus mosquitoes and larvae were studied. Bioelectromagnetism was detected randomly in various anatomical locations in both stages of development (Larva and Adult). An exemption needs to be made with hairs; all images showed that hairs from humans and mosquito (in the larval stage) expressed magnetic susceptibility.

The physiological function of the BMFs found in the mosquito and humans are unknown at present. Further research is warranted

Acknowledgements

The author acknowledges the advice on interpreting the magnetic attraction of the mosquito’s body parts to paramagnetic crystals to Jerry I Jacobson PhD. Also the support in supplies and materials received from Benjamin J. Scherlag PhD from The University of Oklahoma.

ISSN 2377-2700 | www.jnsci.org/content/250